Changes in The Aging Cytoskeleton and How Metformin Plays a Role in Delaying Aging

Dini Dini(1), Achadiyani Achadiyani(2*), Astrid Feinisa Khairani(3)
(1) Graduate School of Master Program in Anti Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran
(2) Graduate School of Master Program in Anti Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung
(3) Graduate School of Master Program in Anti Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran
(*) Corresponding Author
DOI : 10.30604/jika.v9i1.2672

Abstract

The cytoskeleton plays an important role in forming the cell framework and dynamics. The part that plays a role in supporting the spatial and mechanical functions of the cell is located in the cytoskeleton. Therefore, strategies to maintain the integrity and dynamics of the cytoskeleton have potential as therapies for age-related disorders. One thing that can be used to delay aging is metformin. Through AMPK activation, it can influence the cytoskeleton; namely, it can remodel the dynamics of the cytoskeleton by influencing structural changes in the actin cytoskeleton, which in turn will reduce the permeability of the filtration barrier in diabetic conditions and can increase insulin sensitivity, especially in old age, thereby delaying aging. In this review, we review the current understanding of the role played by the cytoskeleton in aging and review the opportunities and challenges for transitioning basic research into intervention development. Methods: Several major electronic databases, including PubMed, Scopus, and Cohcrane were used to select articles between April 2013 and April 2023. From the 8 existing literature, we present the activity of metformin as an aging delay. Cytoskeleton can change with age so it can affect the dynamics and structure of the cell. Metformin shows significant benefits, especially in delaying aging, through activation of the AMPK pathway so that it can increase the activity of mitochondria in producing ATP, which can affect the structure of the cytoskeleton. With this article on changes in the cytoskeleton with aging, it is hoped that insight into future research directions can be achieved.

Keywords


actin; aging cytoskeleton; delay aging; metformin; vimentin

References


Aasebø, E., Hernandez-Valladares, M., Selheim, F., Berven, F. S., Brenner, A. K., & Bruserud, Ø. (2019). Proteomic profiling of primary human acute myeloid leukemia cells does not reflect their constitutive release of soluble mediators. Proteomes, 7(1). https://doi.org/10.3390/proteomes7010001

Balchin, D., Mili?i?, G., Strauss, M., Hayer-Hartl, M., & Hartl, F. U. (2018). Pathway of Actin Folding Directed by the Eukaryotic Chaperonin TRiC. Cell, 174(6), 1507-1521.e16. https://doi.org/10.1016/j.cell.2018.07.006

Barzilai, N., Crandall, J. P., Kritchevsky, S. B., & Espeland, M. A. (2016). Metformin as a Tool to Target Aging. In Cell Metabolism (Vol. 23, Number 6, pp. 1060–1065). Cell Press. https://doi.org/10.1016/j.cmet.2016.05.011

Blackburn, E. H., Epel, E. S., & Lin, J. (2015). Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science, 350(6265), 1193–1198.

Bobkov, D., Polyanskaya, A., Musorina, A., Lomert, E., Shabelnikov, S., & Poljanskaya, G. (2020). Replicative senescence in MSCWJ-1 human umbilical cord mesenchymal stem cells is marked by characteristic changes in motility, cytoskeletal organization, and RhoA localization. Molecular Biology Reports, 47(5), 3867–3883. https://doi.org/10.1007/s11033-020-05476-6

Bonomini, F., Rodella, L. F., & Rezzani, R. (2015). Metabolic syndrome, aging and involvement of oxidative stress. In Aging and Disease (Vol. 6, Number 2, pp. 109–120). International Society on Aging and Disease. https://doi.org/10.14336/AD.2014.0305

Chou, S. Z., & Pollard, T. D. (2019). Mechanism of actin polymerization revealed by cryo-EM structures of actin filaments with three different bound nucleotides. Proceedings of the National Academy of Sciences of the United States of America, 116(10), 4265–4274. https://doi.org/10.1073/pnas.1807028115

De Haes, W., Frooninckx, L., Van Assche, R., Smolders, A., Depuydt, G., Billen, J., Braeckman, B. P., Schoofs, L., & Temmerman, L. (2014). Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2. Proceedings of the National Academy of Sciences of the United States of America, 111(24). https://doi.org/10.1073/pnas.1321776111

Dunkley, S., & Mogessie, B. (2023). Actin limits egg aneuploidies associated with female reproductive aging.

Fang, J., Yang, J., Wu, X., Zhang, G., Li, T., Wang, X., Zhang, H., Wang, C. chen, Liu, G. H., & Wang, L. (2018). Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7. Aging Cell, 17(4). https://doi.org/10.1111/acel.12765

Finley, J. (2018). Transposable elements, placental development, and oocyte activation: Cellular stress and AMPK links jumping genes with the creation of human life. Medical Hypotheses, 118, 44–54. https://doi.org/10.1016/j.mehy.2018.05.015

Garcia, G., Bar-Ziv, R., Averbukh, M., Dasgupta, N., Dutta, N., Zhang, H., Fan, W., Moaddeli, D., Tsui, C. K., Castro Torres, T., Alcala, A., Moehle, E. A., Hoang, S., Shalem, O., Adams, P. D., Thorwald, M. A., & Higuchi-Sanabria, R. (2023). Large-scale genetic screens identify BET-1 as a cytoskeleton regulator promoting actin function and life span. Aging Cell, 22(1). https://doi.org/10.1111/acel.13742

Goodson, H. V., & Jonasson, E. M. (2018). Microtubules and microtubule-associated proteins. Cold Spring Harbor Perspectives in Biology, 10(6). https://doi.org/10.1101/cshperspect.a022608

Haddad, M., Knani, I., Bouzidi, H., Berriche, O., Hammami, M., & Kerkeni, M. (2016). Plasma levels of pentosidine, carboxymethyl-lysine, soluble receptor for advanced glycation end products, and metabolic syndrome: The metformin effect. Disease Markers, 2016. https://doi.org/10.1155/2016/6248264

Hu, D., Xie, F., Xiao, Y., Lu, C., Zhong, J., Huang, D., Chen, J., Wei, J., Jiang, Y., & Zhong, T. (2021). Metformin: A potential candidate for targeting aging mechanisms. In Aging and Disease (Vol. 12, Number 2, pp. 480–493). International Society on Aging and Disease. https://doi.org/10.14336/AD.2020.0702

Hunt, N. J., Lockwood, G. P., Kang, S. W., Pulpitel, T., Clark, X., Mao, H., McCourt, P. A. G., Cooney, G. J., Wali, J. A., Le Couteur, F. H., Le Couteur, D. G., & Cogger, V. C. (2020). The effects of metformin on age-related changes in the liver sinusoidal endothelial cell. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 75(2), 278–285. https://doi.org/10.1093/gerona/glz153

Karnewar, S., Neeli, P. K., Panuganti, D., Kotagiri, S., Mallappa, S., Jain, N., Jerald, M. K., & Kotamraju, S. (2018). Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: Relevance in age-associated vascular dysfunction. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1864(4), 1115–1128. https://doi.org/10.1016/j.bbadis.2018.01.018

Kawaguchi, K., & Asano, S. (2022). Pathophysiological Roles of Actin-Binding Scaffold Protein, Ezrin. In International Journal of Molecular Sciences (Vol. 23, Number 6). MDPI. https://doi.org/10.3390/ijms23063246

Kim, Y. J., Cho, M. J., Yu, W. D., Kim, M. J., Kim, S. Y., & Lee, J. H. (2022). Links of Cytoskeletal Integrity with Disease and Aging. In Cells (Vol. 11, Number 18). MDPI. https://doi.org/10.3390/cells11182896

Kreutzenberg, S. V. de, Ceolotto, G., Cattelan, A., Pagnin, E., Mazzucato, M., Garagnani, P., Borelli, V., Bacalini, M., Franceschi, C., Fadini, G., & Avogaro, A. (2015). Metformin improves putative longevity effectors in peripheral mononuclear cells from subjects with prediabetes. A randomized controlled trial. ELSEVIER, 25(7).

Lai, W. F., & Wong, W. T. (2020). Roles of the actin cytoskeleton in aging and age-associated diseases. In Ageing Research Reviews (Vol. 58). Elsevier Ireland Ltd. https://doi.org/10.1016/j.arr.2020.101021

Langlois, B., Belozertseva, E., Parlakian, A., Bourhim, M., Gao-Li, J., Blanc, J., Tian, L., Coletti, D., Labat, C., Ramdame-Cherif, Z., Challande, P., Regnault, V., Lacolley, P., & Zhenlin, L. (2017). Vimentin knockout results in increased expression of sub-endothelial basement membrane components and carotid stiffness in mice. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-12024-z

Makhija, E., Jokhun, D. S., & Shivashankar, G. V. (2016). Nuclear deformability and telomere dynamics are regulated by cell geometric constraints. Proceedings of the National Academy of Sciences of the United States of America, 113(1), E32–E40. https://doi.org/10.1073/pnas.1513189113

Mohamad, M., Mitchell, S. J., Wu, L. E., White, M. Y., Cordwell, S. J., Mach, J., Solon-Biet, S. M., Boyer, D., Nines, D., Das, A., Catherine Li, S. Y., Warren, A., Hilmer, S. N., Fraser, R., Sinclair, D. A., Simpson, S. J., de Cabo, R., Le Couteur, D. G., & Cogger, V. C. (2016). Ultrastructure of the liver microcirculation influences hepatic and systemic insulin activity and provides a mechanism for age-related insulin resistance. Aging Cell, 15(4), 706–715. https://doi.org/10.1111/acel.12481

Mu, X., Tseng, C., Hambright, W. S., Matre, P., Lin, C. Y., Chanda, P., Chen, W., Gu, J., Ravuri, S., Cui, Y., Zhong, L., Cooke, J. P., Niedernhofer, L. J., Robbins, P. D., & Huard, J. (2020). Cytoskeleton stiffness regulates cellular senescence and innate immune response in Hutchinson–Gilford Progeria Syndrome. Aging Cell, 19(8). https://doi.org/10.1111/acel.13152

Na, H. J., Park, J. S., Pyo, J. H., Jeon, H. J., Kim, Y. S., Arking, R., & Yoo, M. A. (2015). Metformin inhibits age-related centrosome amplification in Drosophila midgut stem cells through AKT/TOR pathway. Mechanisms of Ageing and Development, 149, 8–18. https://doi.org/10.1016/j.mad.2015.05.004

Ndiaye, A. B., Koenderink, G. H., & Shemesh, M. (2022). Intermediate Filaments in Cellular Mechanoresponsiveness: Mediating Cytoskeletal Crosstalk From Membrane to Nucleus and Back. In Frontiers in Cell and Developmental Biology (Vol. 10). Frontiers Media S.A. https://doi.org/10.3389/fcell.2022.882037

Novelle, M. G., Ali, A., Diéguez, C., Bernier, M., & de Cabo, R. (2016). Metformin: A hopeful promise in aging research. Cold Spring Harbor Perspectives in Medicine, 6(3). https://doi.org/10.1101/cshperspect.a025932

Páez, J., Hernández, R., Espinoza, J., Rojas, L., Martínez, C. E., Tobar, N., Martínez, J., & Smith, P. C. (2020). Uncoupled inflammatory, proliferative, and cytoskeletal responses in senescent human gingival fibroblasts. Journal of Periodontal Research, 55(3), 432–440. https://doi.org/10.1111/jre.12727

Pal, S., & Tyler, J. K. (2016). Epigenetics and aging. In Science Advances (Vol. 2, Number 7). American Association for the Advancement of Science. https://doi.org/10.1126/sciadv.1600584

Park, S.-K., & Shin, O. S. (2017). Metformin alleviates ageing cellular phenotypes in Hutchinson–Gilford progeria syndrome dermal fibroblasts. Wiley.

Picca, A., Lezza, A. M. S., Leeuwenburgh, C., Pesce, V., Calvani, R., Landi, F., Bernabei, R., & Marzetti, E. (2017). Fueling inflamm-aging through mitochondrial dysfunction: Mechanisms and molecular targets. In International Journal of Molecular Sciences (Vol. 18, Number 5). MDPI AG. https://doi.org/10.3390/ijms18050933

Pollard, T. D. (2016). Actin and actin-binding proteins. Cold Spring Harbor Perspectives in Biology, 8(8). https://doi.org/10.1101/cshperspect.a018226

Pollard, T. D., & Goldman, R. D. (2018). Overview of the cytoskeleton from an evolutionary perspective. Cold Spring Harbor Perspectives in Biology, 10(7). https://doi.org/10.1101/cshperspect.a030288

Roy, J., Galano, J. M., Durand, T., Le Guennec, J. Y., & Lee, J. C. Y. (2017). Physiological role of reactive oxygen species as promoters of natural defenses. In FASEB Journal (Vol. 31, Number 9, pp. 3729–3745). FASEB. https://doi.org/10.1096/fj.201700170R

Sliogeryte, K., & Gavara, N. (2019). Vimentin plays a crucial role in fibroblast ageing by regulating biophysical properties and cell migration. Cells, 8(10). https://doi.org/10.3390/cells8101164

Svitkina, T. (2018). The actin cytoskeleton and actin-based motility. Cold Spring Harbor Perspectives in Biology, 10(1). https://doi.org/10.1101/cshperspect.a018267

Szrejder, M., Rachubik, P., Rogacka, D., Audzeyenka, I., Rych?owski, M., Kreft, E., Angielski, S., & Piwkowska, A. (2020). Metformin reduces TRPC6 expression through AMPK activation and modulates cytoskeleton dynamics in podocytes under diabetic conditions. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1866(3). https://doi.org/10.1016/j.bbadis.2019.165610

Tang, D., Kang, R., Berghe, T. Vanden, Vandenabeele, P., & Kroemer, G. (2019). The molecular machinery of regulated cell death. In Cell Research (Vol. 29, Number 5, pp. 347–364). Nature Publishing Group. https://doi.org/10.1038/s41422-019-0164-5

WHO. (2022, October 1). Ageing and Health. Https://Www.Who.Int/News-Room/Fact-Sheets/Detail/Ageing-and-Health.

Wilson, C., & González-Billault, C. (2015). Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: Implications for neuronal development and trafficking. In Frontiers in Cellular Neuroscience (Vol. 9, Number SEPTEMBER). Frontiers Research Foundation. https://doi.org/10.3389/fncel.2015.00381

Wilson, J., & Hunt, T. (2014). Molecular Biology of the Cell 6 Edition (6th ed.). W.W. Norton.

Xu, L., Zhang, X., Zhao, Y., Gang, X., Zhou, T., Han, J., Cao, Y., Qi, B., Song, S., Wang, X., & Liang, Y. (2023). Metformin protects trabecular meshwork against oxidative injury via activating integrin/ROCK signals. ELife, 12. https://doi.org/10.7554/eLife.81198

Xu, Q., Huff, L. P., Fujii, M., & Griendling, K. K. (2017). Redox regulation of the actin cytoskeleton and its role in the vascular system. In Free Radical Biology and Medicine (Vol. 109, pp. 84–107). Elsevier Inc. https://doi.org/10.1016/j.freeradbiomed.2017.03.004

Xu, Y., Li, Y., Ma, L., Xin, G., Wei, Z., Zeng, Z., Xing, Z., Li, S., Niu, H., & Huang, W. (2018). D-galactose induces premature senescence of lens epithelial cells by disturbing autophagy flux and mitochondrial functions. Toxicology Letters, 289, 99–106. https://doi.org/10.1016/j.toxlet.2018.02.001

Zheng, Z., Bian, Y., Zhang, Y., Ren, G., & Li, G. (2020). Metformin activates AMPK/SIRT1/NF-?B pathway and induces mitochondrial dysfunction to drive caspase3/GSDME-mediated cancer cell pyroptosis. Cell Cycle, 19(10), 1089–1104. https://doi.org/10.1080/15384101.2020.1743911

Zheng, Y., Merchant, M. L., Merchant, M. L., Burke, T. J., Ritzenthaler, J. D., Li, M., Gaweda, A. E., Benz, F. W., Roman, J., Watson, W. H., & Watson, W. H. (2020). Redox States of Protein Cysteines in Pathways of Protein Turnover and Cytoskeleton Dynamics Are Changed with Aging and Reversed by Slc7a11 Restoration in Mouse Lung Fibroblasts. Oxidative Medicine and Cellular Longevity, 2020. https://doi.org/10.1155/2020/2468986


Article Statistic

Abstract view : 129 times
PDF (Bahasa Indonesia) views : 19 times

Dimensions Metrics

How To Cite This :

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.