Resistance Status of Dengue Virus Serotype in Aedes Aegypti on The Exposure of Insecticide Temefos and Cypermethrin



Arimaswati Arimaswati(1), La Ode Alifariki(2), Heriviyatno Julika Siagian(3Mail), Tukatman Tukatman(4), La Rangki(5),
(1) Halu Oleo University, Indonesia
(2) Halu Oleo University, Indonesia
(3) Sembilanbelas November University, Indonesia
(4) Sembilanbelas November University, Indonesia
(5) Halu Oleo University, Indonesia

Mail Corresponding Author


DOI : https://doi.org/10.30604/jika.v5i2.374

Full Text:    Language : Eng
Submitted : 2020-11-10
Published : 2020-12-09

Abstract


The success of vector control is influenced by the resistance of Ae. aegypti against insecticides. The continued use of insecticides will leave a resistant population. The study aims to determine the resistance status of dengue virus serotype in Aedes Aegypti on the exposure of Insecticide Temefos and cypermethrin. Mosquitoes are taken directly from the tub and the home environment using the GAMA DOTIK. To determine the status of resistance to organophosphate insecticides in larvae and synthetic pyrethroids in adult mosquitoes, a biological test was carried out using the WHO 1992 method at a diagnostic dose (temefos 0.02 ppm and 0.05% cypermethrin), while the serotype of the dengue virus was determined by the Reverse Transcriptase method. -Polymerase Chain Reaction (RT-PCR) using Lanciotti-specific primers. Endemic areas (Gadingan, Wonosidi Lor and Dipan) are all still susceptible to temefos with 100% larval mortality. Sporadic areas such as Driyan were in a vulnerable status with Mortality Rate (AK) = 100%, Durungan and Kriyanan were in a tolerant status (AK = 88% and 97%). Potential areas such as Kauman and Janten were vulnerable (AK = 100% and 98%), Panjatan was intolerant status (AK = 84%). Endemic, sporadic and potential areas were all resistant with AK = less than 80% to the insecticide cypermethrin. Dengue virus serotypes in endemic areas are dengue 2 and dengue 3. In potential areas, dengue serotype 3 is found, while in sporadic areas there are no virus serotypes. Conclusion: The resistance status of Aedes aegypti in endemic, sporadic and potential areas to organophosphate insecticides (temefos) is in the susceptible to the tolerant range, while all areas status to synthetic pyrethroids (cypermethrin) are resistant.

 

Abstrak: Keberhasilan pengendalian vektor dipengaruhi oleh hambatan Ae. aegypti melawan insektisida. Penggunaan insektisida secara terus menerus akan meninggalkan populasi yang resisten. Penelitian ini bertujuan untuk mengetahui status resistensi serotipe virus dengue Aedes Aegypti terhadap paparan Insektisida Temefos dan cypermethrin. Nyamuk diambil langsung dari bak mandi dan lingkungan rumah menggunakan GAMA DOTIK. Untuk mengetahui status resistensi insektisida organofosfat pada larva dan piretroid sintetik pada nyamuk dewasa, dilakukan uji biologis dengan metode WHO 1992 dengan dosis diagnostik (temefos 0,02 ppm dan 0,05% cypermethrin), sedangkan serotipe virus dengue ditentukan dengan metode Reverse Transcriptase. -Polymerase Chain Reaction (RT-PCR) menggunakan primer khusus Lanciotti. Daerah endemik (Gadingan, Wonosidi Lor dan Dipan) semuanya masih rentan terhadap temefos dengan kematian larva 100%. Daerah sporadis seperti Driyan berada dalam status rawan dengan Angka Kematian (AK) = 100%, Durungan dan Kriyanan dalam status toleran (AK = 88% dan 97%). Wilayah potensial seperti Kauman dan Janten termasuk kategori rawan (AK = 100% dan 98%), Panjatan dalam status toleran (AK = 84%). Daerah endemik, sporadis dan potensial semuanya resisten dengan AK = kurang dari 80% terhadap insektisida cypermethrin. Serotipe virus Dengue di daerah endemis adalah Dengue 2 dan Dengue 3. Di daerah potensial ditemukan Dengue Serotipe 3, sedangkan di daerah sporadis tidak terdapat serotipe virus. Status resistensi nyamuk Aedes aegypti di daerah endemik, sporadis dan potensial terhadap insektisida organofosfat (temefos) berada pada rentang toleran, sedangkan semua status daerah terhadap piretroid sintetis (cypermethrin) resisten.


Keywords


Ae. Aegypti; cypermethrin; dengue virus serotype; temefos

References


Ahmad, I., Astari, S., & Tan, M. (2007). Resistance of Aedes aegypti (Diptera: Culicidae) in 2006 to pyrethroid insecticides in Indonesia and its association with oxidase and esterase levels. Pakistan Journal of Biological Sciences : PJBS, 10(20), 3688–3692. https://doi.org/10.3923/pjbs.2007.3688.3692

Alifariki, L. O., & Mubarak. (2017). Hubungan Karakteristik Kontainer dengan Keberadaan Jentik Nyamuk Aedes aegypti di Wilayah Kerja Puskesmas Poasia Kota Kendari. Medula, 5(1), 388–393.

Boesri, H., & Susanti, L. (n.d.). Efektivitas Residu Insektisida Actellic 500EC pada Berbagai Macam Permukaan Dinding Terhadap Kematian Nyamuk Anopheles aconitus , Aedes aegypti , dan Culex quinquefasciatus The efficacy of Actellic 500 EC insecticide residue on various types of wall surfa.

Harapan, H., Michie, A., Mudatsir, M., Sasmono, R. T., & Imrie, A. (2019). Epidemiology of dengue hemorrhagic fever in Indonesia: Analysis of five decades data from the National Disease Surveillance. BMC Research Notes, 12(1), 4–9. https://doi.org/10.1186/s13104-019-4379-9

Indriani, F. (2002). Response of Adult Stadium Aedes aegypti Mosquitoes in Depok and Sleman Districts to Malation Insecticide. Gadjah Mada University.

Kemenkes, R. I. (2013). Riset kesehatan dasar (Riskesdas) 2013. Jakarta: Badan Penelitian Dan Pengembangan Kesehatan.

Kemenkes, R. I. (2015). Profil Kesehatan Indonesia 2015. Jakarta: Kementerian Kesehatan Republik Indonesia.

Kulon Progo District Health Office. (2020). Health profile of Kulon Progo Regency in 2020.

Lanciotti, R. S., Calisher, C. H., Gubler, D. J., Chang, G. J., & Vorndam, A. V. (1992). Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. Journal of Clinical Microbiology, 30(3), 545–551. https://doi.org/10.1128/JCM.30.3.545-551.1992

Lima, E. P., Paiva, M. H. S., de Araújo, A. P., da Silva, E. V. G., da Silva, U. M., de Oliveira, L. N., Santana, A. E. G., Barbosa, C. N., de Paiva Neto, C. C., Goulart, M. O. F., Wilding, C. S., Ayres, C. F. J., & de Melo Santos, M. A. V. (2011). Insecticide resistance in Aedes aegypti populations from Ceará, Brazil. Parasites & Vectors, 4, 5. https://doi.org/10.1186/1756-3305-4-5

Martini, M., Hestiningsih, R., Widjanarko, B., & Purwantisari, S. (2019). Resistance of Aedes as a Vectors Potential for Dengue Hemorrhagic Fever (DHF) in Semarang City, Indonesia. Journal of Tropical Life Science, 9(1), 89–94. https://doi.org/10.11594/jtls.09.01.12

Melo-Santos, M. A. V, Varjal-Melo, J. J. M., Araújo, A. P., Gomes, T. C. S., Paiva, M. H. S., Regis, L. N., Furtado, A. F., Magalhaes, T., Macoris, M. L. G., Andrighetti, M. T. M., & Ayres, C. F. J. (2010). Resistance to the organophosphate temephos: Mechanisms, evolution and reversion in an Aedes aegypti laboratory strain from Brazil. Acta Tropica, 113(2), 180–189. https://doi.org/https://doi.org/10.1016/j.actatropica.2009.10.015

Montella, I. R., Martins, A. J., Viana-Medeiros, P. F., Lima, J. B. P., Braga, I. A., & Valle, D. (2007). Insecticide resistance mechanisms of Brazilian Aedes aegypti populations from 2001 to 2004. The American Journal of Tropical Medicine and Hygiene, 77(3), 467–477.

Mulyaningsih, B., Umniyati, S. R., Phillabertha, P. S., Irawan, R. P., & Romula, M. A. (2019). Biochemical detection and characterization of insecticide resistance in dengue vector Aedes aegypti (L.) from areas around Universitas Gadjah Mada. Southeast Asian Journal of Tropical Med Public Health, 50(1), 47–54.

Mulyatno, K. C., Yamanaka, A., Ngadino, & Konishi, E. (2012). Resistance of Aedes aegypti (L.) larvae to temephos in Surabaya, Indonesia. The Southeast Asian Journal of Tropical Medicine and Public Health, 43(1), 29–33.

Paine, M., & Brooke, B. (2016). Insecticide Resistance and Its Impact on Vector Control (pp. 287–312). https://doi.org/10.1007/978-3-319-31800-4_15

Pimsamarn, S., Sornpeng, W., Akksilp, S., Paeporn, P., & Limpawitthayakul, M. (n.d.). Detection of insecticide resistance in Aedes aegypti to organophosphate and synthetic pyrethroid compounds in the north-east of Thailand. https://apps.who.int/iris/handle/10665/170964

Rodenhuis-Zybert, I., Wilschut, J., & Smit, J. (2010). Dengue Virus Life Cycle: Viral and Host Factors Modulating Infectivity. Cellular and Molecular Life Sciences : CMLS, 67, 2773–2786. https://doi.org/10.1007/s00018-010-0357-z

Singh, R. K., Dhiman, R. C., Mittal, P. K., & Dua, V. K. (2011). Susceptibility status of dengue vectors against various insecticides in Koderma (Jharkhand), India. Journal of Vector Borne Diseases, 48(2), 116–118.

Sirisopa, P., Thanispong, K., Chareonviriyaphap, T., & Juntarajumnong, W. (2014). Resistance to synthetic pyrethroids in Aedes aegypti (Diptera: Culicidae) in Thailand. Kasetsart Journal - Natural Science, 48, 577–586.

Untung, K. (2005). Integrated Pest Management. Gadjahmada University Press.

Urdaneta, L., Herrera, F., Pernalete, M., Zoghbi, N., Rubio-Palis, Y., Barrios, R., Rivero, J., Comach, G., Jiménez, M., & Salcedo, M. (2005). Detection of dengue viruses in field-caught Aedes aegypti (Diptera: Culicidae) in Maracay, Aragua state, Venezuela by type-specific polymerase chain reaction. Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 5(2), 177–184. https://doi.org/10.1016/j.meegid.2004.09.004

Yasmon, A., Fatmawati, N. N. D., Ibrahim, F., & Bela, B. (2010). A second generation of RT-PCR assay for detection of human immunodeficiency virus type 1 (HIV-1) infection. Medical Journal of Indonesia, 19(3), 154–157. https://doi.org/10.13181/mji.v19i3.397


Article Metrics

 Abstract Views : 69 times
 Fulltext (Bahasa Indonesia) Downloaded : 35 times

Dimensions, PlumX, and Google Scholar Metrics

10.30604/jika.v5i2.374



Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.