Antidiabetic Effects of Red Rice Bran in The Rat Models of Diabetes
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia than often requires antidiabetic drugs (AD) to control fasting blood glucose (FBG) levels. However, long-term use of AD has side effects. Red rice bran is a natural food containing flavonoids and anthocyanins, rich in antioxidants. However, the antidiabetic effect of rice bran is yet to be understood. This study aimed to determine the effect of ethanol extract of red rice bran (EERRB) on the levels of FBG, insulin, HOMA-IR, HOMA-B, and QUICKI on male rats induced by streptozotocin-nicotinamide (STZ-NA). This study was a pretest-posttest control group design. White male Wistar rats (Rattus norvegicus) (n=35) were divided into five groups randomly i.e P1 negative control (STZ-NA), P2 positive control (STZ-NA and acarbose 1.8 mg/200 g BW), P3, P4, P5 EERRB groups (STZ-NA and EERRB 165, 330, 660 mg/kg BW). The intervention was performed in 21 days. The data were analyzed using one way ANOVA test, paired t-test and Post Hoc test. EERRB effectively reduced FBG and HOMA-IR but increased insulin, HOMA-B and QUICKI in STZ-NA induced diabetic male rats. In conclusion, this shows that EERRB 330 and 660 mg/kgBW/day have the most potent antidiabetic effect.
Abstrak: Diabetes melitus (DM) adalah penyakit metabolik yang ditandai dengan hiperglikemia kronis yang seringkali memerlukan obat antidiabetes (OAD) guna membantu mengontrol kadar glukosa darah puasa (GDP). Akan tetapi, penggunaan OAD dalam jangka panjang menimbulkan efek samping. Bekatul beras merah adalah bahan pangan alami dengan kandungan flavonoid dan antosianin yang kaya antioksidan. Namun, belum diketahui secara pasti efek antidiabetes dari bekatul beras merah tersebut. Penelitian ini bertujuan untuk mengetahui efek ekstrak etanol bekatul beras merah (EEBBM) terhadap kadar GDP, insulin, HOMA-IR, HOMA-B, dan QUICKI pada tikus jantan diabetes yang diinduksi Streptopzotocin-Nicotinamide (STZ-NA). Rancangan penelitian berupa pretest-posttest control group design. Tikus putih jantan Wistar (Rattus norvegicus) (n=35) terbagi menjadi lima kelompok secara acak: P1 kelompok kontrol negatif (diinduksi STZ-NA), P2 kelompok kontrol positif (diinduksi STZ-NA dan diberi akarbosa 1,8 mg/200 gBB), P3, P4, dan P5 kelompok EEBBM (diinduksi STZ-NA dan diberi EEBBM 165, 330, dan 660 mg/kgBB). Intervensi dilakukan selama 21 hari. Data dianalisis menggunakan uji one way ANOVA, paired t-test, dan uji Post Hoc. EEBBM efektif menurunkan GDP dan HOMA-IR serta meningkatkan insulin, HOMA-B, dan QUICKI pada tikus jantan model diabetes yang diinduksi STZ-NA. Kesimpulannya menunjukkan bahwa EEBBM330 dan 660 mg/kgBB/hari memiliki efek antidiabetik yang paling kuat.
Keywords
References
Ahangarpour, A., Oroojan, A. A., Khorsandi, L., Kouchak, M., & Badavi, M. (2018). Solid Lipid Nanoparticles of Myricitrin Have Antioxidant and Antidiabetic Effects on Streptozotocin-Nicotinamide-Induced Diabetic Model and Myotube Cell of Male Mouse. Oxidative Medicine and Cellular Longevity, 2018, 1–18. https://doi.org/10.1155/2018/7496936
Apichai, S., Pongchaidecha, A., Kaeapai, W., Jitprawet, N., & Lailerd, N. (2012). Beneficial effects of thai purple sticky rice supplement in streptozotocin induced diabetic rats. Chiang Mai University Journal of Natural Sciences, 11(1), 371–381. Retrieve from: https://www.thaiscience.info/Journals/Article/CMUJ/10887465.pdf
Banerjee, M., & Vats, P. (2014). Reactive metabolites and antioxidant gene polymorphisms in Type 2 diabetes mellitus. Redox Biology, 2(1), 170–177. https://doi.org/10.1016/j.redox.2013.12.001
Belwal, T., Nabavi, S. F., Nabavi, S. M., & Habtemariam, S. (2017). Dietary anthocyanins and insulin resistance: When food becomes a medicine. Nutrients, 9(10), 1–22. https://doi.org/10.3390/nu9101111
Bilous, R., & Donelly, R. (2015). Buku Pegangan Diabetes (4th ed.). Jakarta, Indonesia: Bumi Medika.
Boue, S. M., Daigle, K. W., Chen, M. H., Cao, H., & Heiman, M. L. (2016). Antidiabetic potential of purple and red rice (Oryza sativa L.) bran extracts. Journal of Agricultural and Food Chemistry, 64(26), 5345–5353. https://doi.org/10.1021/acs.jafc.6b01909
BPOM (Badan Pengawasan dan Obat). (2015). Akarbosa. Retrieve from: http://pionas.pom.go.id/monografi/akarbosa
BPS (Badan Pusat Statistik). (2020). Luas Panen dan Produksi Padi di Indonesia 2020. Badan Pusat Statistik. Retrieve from: https://www.bps.go.id/pressrelease/2020/10/15/1757/luas-panen-dan-produksi-padi-pada-tahun-2020-mengalami-kenaikan-dibandingkan-tahun-2019-masing-masing-sebesar-1-02-dan-1-02-persen-.html
Brahmachari, G. (2011). Bio-flavonoids with promising anti- diabetic potentials : A critical survey. Opportunity, Challenge and Scope of Natural Products in Medicinal Chemistry - Research Signpost, 661(2), 187–212. Retrieve from: https://www.researchgate.net/profile/Goutam-Brahmachari/publication/235942993_Bio-flavonoids_with_promising_antidiabetic_potentials_A_critical_survey/links/02e7e52dfea08ed57f000000/Bio-flavonoids-with-promising-antidiabetic-potentials-A-critical-survey.pdf
Choi, K. H., Lee, H. A., Park, M. H., & Han, J. S. (2016). Mulberry (Morus alba L.) Fruit Extract Containing Anthocyanins Improves Glycemic Control and Insulin Sensitivity via Activation of AMP-Activated Protein Kinase in Diabetic C57BL/Ksj-db/db Mice. Journal of Medicinal Food, 19(8), 737–745. https://doi.org/10.1089/jmf.2016.3665
DeFronzo, R. A., Ferrannini, E., Groop, L., Henry, R. R., Herman, W. H., Holst, J. J., Hu, F. B., Kahn, C. R., Raz, I., Shulman, G. I., Simonson, D. C., Testa, M. A., & Weiss, R. (2015). Type 2 diabetes mellitus. Nature Reviews Disease Primers, 1(July), 1–23. https://doi.org/10.1038/nrdp.2015.19
Dietrich, S., Jacobs, S., Zheng, J. S., Meidtner, K., Schwingshackl, L., & Schulze, M. B. (2019). Gene-lifestyle interaction on risk of type 2 diabetes: A systematic review. Obesity Reviews, 20(11), 1557–1571. https://doi.org/10.1111/obr.12921
Dube, S., Errazuriz, I., Cobelli, C., Basu, R., & Basu, A. (2013). Assessment of insulin action on carbohydrate metabolism: Physiological and non-physiological methods. Diabetic Medicine, 30(6), 664–670. https://doi.org/10.1111/dme.12189
Eleazu, C. O., Eleazu, K. C., Chukwuma, S., & Essien, U. N. (2013). Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. Journal of Diabetes and Metabolic Disorders, 12(1), 1–7. https://doi.org/10.1186/2251-6581-12-60
Esa, N. M., Ling, T. B., & Peng, L. S. (2013). By-products of Rice Processing: An Overview of Health Benefits and Applications. Rice Research, 4(1), 1–11. https://doi.org/10.4172/jrr.1000107
Ghasemi, A., Khalifi, S., & Jedi, S. (2014). Streptozotocin-nicotinamide-induced rat model of type 2 diabetes (review). Acta Physiologica Hungarica, 101(4), 408–420. https://doi.org/10.1556/APhysiol.101.2014.4.2
Goufo, P., & Trindade, H. (2014). Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, ??oryzanol, and phytic acid. Food Science and Nutrition, 2(2), 75–104. https://doi.org/10.1002/fsn3.86
Gowd, V., Jia, Z., & Chen, W. (2017). Anthocyanins as promising molecules and dietary bioactive components against diabetes – A review of recent advances. Trends in Food Science and Technology, 68, 1–13. https://doi.org/10.1016/j.tifs.2017.07.015
Gul, K., Yousuf, B., Singh, A. K., Singh, P., & Wani, A. A. (2015). Rice bran: Nutritional values and its emerging potential for development of functional food - A review. Bioactive Carbohydrates and Dietary Fibre, 6(1), 24–30. https://doi.org/10.1016/j.bcdf.2015.06.002
Hanamura, T., Mayama, C., Aoki, H., Hirayama, Y., & Shimizu, M. (2006). Antihyperglycemic effect of polyphenols from acerola (Malpighia emarginata DC.) fruit. Bioscience, Biotechnology and Biochemistry, 70(8), 1813–1820. https://doi.org/10.1271/bbb.50592
Hartono, H. S., Soetjipto, H., & Kristijanto, A. I. (2017). Extraction and Chemical Compounds Identification of Red Rice Bran Oil Using Gas Chromatography – Mass Spectrometry (Gc-Ms) Method. Jurnal Eksakta, 17(2), 98–110. https://doi.org/10.20885/eksakta.vol17.iss2.art2
Hirata, A., Maeda, N., Hiuge, A., Hibuse, T., Fujita, K., Okada, T., Kihara, S., Funahashi, T., & Shimomura, I. (2009). Blockade of mineralocorticoid receptor reverses adipocyte dysfunction and insulin resistance in obese mice. Cardiovascular Research, 84(1), 164–172. https://doi.org/10.1093/cvr/cvp191
Hsieh-Lo, M., Castillo-Herrera, G., & Mojica, L. (2020). Black bean anthocyanin-rich extract from supercritical and pressurized extraction increased in vitro antidiabetic potential, while having similar storage stability. Foods, 9(5), 1–17. https://doi.org/10.3390/foods9050655
Husna, F., Suyatna, F. D., Arozal, W., & Purwaningsih, E. H. (2019). Model Hewan Coba pada Penelitian Diabetes. Pharmaceutical Sciences and Research, 6(3), 131–141. https://doi.org/10.7454/psr.v6i3.4531
International Diabetes Federation. (2021). IDF Diabetes Atlas (10th ed.). International Diabetes Federation. Retrieve from: www.diabetesatlas.org
Keane, K. N., Cruzat, V. F., Carlessi, R., de Bittencourt Jr., P. I. H., & Newsholme, P. (2015). Molecular Events Linking Oxidative Stress and Inflammation to Insulin Resistance and ?-Cell Dysfunction.pdf. Oxidative Medicine and Cellular Longetivity, 2015, 1–15. https://doi.org/10.1155/2015/181643
Kurimoto, Y., Shibayama, Y., Inoue, S., Soga, M., Takikawa, M., Ito, C., Nanba, F., Yoshida, T., Yamashita, Y., Ashida, H., & Tsuda, T. (2013). Black soybean seed coat extract ameliorates hyperglycemia and insulin sensitivity via the activation of AMP-activated protein kinase in diabetic mice. Journal of Agricultural and Food Chemistry, 61(23), 5558–5564. https://doi.org/10.1021/jf401190y
Les, F., Cásedas, G., Gómez, C., Moliner, C., Valero, M. S., & López, V. (2020). The role of anthocyanins as antidiabetic agents: from molecular mechanisms to in vivo and human studies. Journal of Physiology and Biochemistry, 77, 109–131. https://doi.org/10.1007/s13105-020-00739-z
Ma, Y., Wang, Y., Huang, Q., Ren, Q., Chen, S., Zhang, A., Zhao, L., Zhen, Q., & Peng, Y. (2014). Impaired ? cell function in Chinese newly diagnosed type 2 diabetes mellitus with hyperlipidemia. Journal of Diabetes Research, 2014, 1–6. https://doi.org/10.1155/2014/493039
Mahan, L. K., & Raymond, J. L. (2017). Krause’s Food & The Nutrition Care Process. In L. K. Mahan & J. L. Raymond (Eds.), Journal of Nutrition Education and Behavior (14th ed., Vol. 51, Issue 10). Elsevier Inc. https://doi.org/10.1016/j.jneb.2019.06.022
Mohan, S., & Nandhakumar, L. (2014). Role of various flavonoids: Hypotheses on novel approach to treat diabetes. Journal of Medical Hypotheses and Ideas, 8(1), 1–6. https://doi.org/10.1016/j.jmhi.2013.06.001
Nurhidajah, N., & Nurrahman, N. (2017). Efek Hipoglikemik Kecambah Beras Merah pada Tikus yang Diinduksi STZ-NA dengan Parameter Kadar Insulin, Indeks HOMA-IR dan HOMA ?. In Agritech (Vol. 36, Issue 4, pp. 433–439). https://doi.org/10.22146/agritech.16767
Nurrohima, D., Wasita, B., & Susilawati, T. N. (2021). The Levels of Flavonoid and Anthocyanin in The Ethanol Extract of Red Rice Bran. The 2nd International Nursing and Health Sciences Symposium (INHSS) (pp. 7–13). Retrieve from: https://inhss.ub.ac.id/index.php/inhss/inhss2021/paper/view/260/2
Office of Laboratory Animal Welfare. (2002). Institutional Animal Care and Use Committee Guidebook (2nd ed.). United States: National Institute of Health.
Palupi, F. D., Waskita, B., & Nuhriawangsa, A. M. P. (2019). Pengaruh Dosis dan Lama Waktu Pemberian Ekstrak Etanol Pegagan (Centella asiatica) terhadap Kadar Gula Darah dan Derajat Insulitis Tikus Model Diabetes Melitus Tipe 2. Media Gizi Mikro Indonesia, 10(2), 111–124. https://doi.org/10.22435/mgmi.v10i2.588
Pasaribu, S. F., Wiboworini, B., & Kartikasari, L. R. (2021). Effect of Germinated Black Rice Krisna Extract on Fasting Blood Glucose and Body Weight in Diabetes Mellitus Rats. International Journal of Sciences, 6(4), 194–200. https://doi.org/10.30476/IJNS.2021.93204.1163
Prawitasari, D. S. (2019). Diabetes Melitus dan Antioksidan. KELUWIH: Jurnal Kesehatan Dan Kedokteran, 1(1), 48. https://doi.org/10.24123/kesdok.v1i1.2496
Riskesdas (Riset Kesehatan Dasar). (2018). Hasil Utama Riset Kesehatan Dasar (RISKESDAS). In Riskesdas (Vol. 44, Issue 8). https://doi.org/10.1088/1751-8113/44/8/085201
Saji, N., Francis, N., Schwarz, L. J., Blanchard, C. L., & Santhakumar, A. B. (2019). Rice bran derived bioactive compounds modulate risk factors of cardiovascular disease and type 2 diabetes mellitus: An updated review. Nutrients, 11(11). https://doi.org/10.3390/nu11112736
Sancho, R. A. S., & Pastore, G. M. (2012). Evaluation of the effects of anthocyanins in type 2 diabetes. Food Research International, 46(1), 378–386. https://doi.org/10.1016/j.foodres.2011.11.021
Sasaki, R., Nishimura, N., Hoshino, H., Isa, Y., Kadowaki, M., Ichi, T., Tanaka, A., Nishiumi, S., Fukuda, I., Ashida, H., Horio, F., & Tsuda, T. (2007). Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice. Biochemical Pharmacology, 74(11), 1619–1627. https://doi.org/10.1016/j.bcp.2007.08.008
Sebastian, R. S., Enns, C. W., Clemens, J. C., Goldman, J. D., Steinfeldt, L. C., Martin, C. L., & Moshfegh, A. . (2016). Flavonoid intake from food and beverages: What We Eat in America, NHANES 2007-2008, Tables 1-4. Worldwide Web Site: Food Surveys Research Group. Retrieve from: www.ars.usda.gov/Services/docs.htm?docid=25102
Sun, C. De, Zhang, B., Zhang, J. K., Xu, C. J., Wu, Y. L., Li, X., & Chen, K. S. (2012). Cyanidin-3-glucoside-rich extract from Chinese bayberry fruit protects pancreatic ? cells and ameliorates hyperglycemia in streptozotocin-induced diabetic mice. Journal of Medicinal Food, 15(3), 288–298. https://doi.org/10.1089/jmf.2011.1806
Szkudelski, T. (2012). Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Experimental Biology and Medicine, 237(5), 481–490. https://doi.org/10.1258/ebm.2012.011372
Tuarita, M. Z., Sadek, N. F., Sukarno, & Yuliana, N. D. (2017). Pengembangan Bekatul sebagai Pangan Fungsional: Peluang, Hambatan, dan Tantangan. Jurnal Pangan, 26(22).
Wallace, T. C., & Giusti, M. M. (2015). Anthocyanins. Advances in Nutrition. American Society for Nutrition, 8, 620–622. https://doi.org/10.3945/an.115.009233
Warganegara, E., Mutiara, H., & Zettira, O. Z. (2019). Pengaruh Pemberian Ekstrak Bekatul Beras Merah terhadap Perubahan Diameter Lumen Arteri Koronaria Tikus Putih (Rattus norvegicus) Jantan Galur Sprague-Dawley yang Diinduksi Paparan Asap Rokok Kretek. Majority, 8(2), 167–172. Retrieve from: http://repository.lppm.unila.ac.id/22102/1/Ocsy_BerasMerah%2CLumen%20Arteri_EF%2CHM.pdf
Widarta, I. W. R., & Arnata, I. W. (2014). Stabilitas Aktivitas Antioksidan Ekstrak Bekatul Beras Merah terhadap Oksidator dan Pemanasan Pada Berbagai pH. Jurnal Teknologi Dan Industri Pangan, 25(2), 193–199. https://doi.org/10.6066/jtip.2014.25.2.193
Article Statistic
Abstract view : 267 timesFulltext (Bahasa Indonesia) views : 97 times
Dimensions Metrics
How To Cite This :
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Diana Nurrohima, Brian Wasita, Tri Nugraha Susilawati

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.