Filtration Method with Three Media Combinations to Improve Rainwater Quality as A Drinking Water

Qori Nur Annisa(1), Prayudhy Yushananta(2*), Bambang Murwanto(3)
(1) Politeknik Kesehatan Kementerian Kesehatan Tanjung Karang
(2) Politeknik Kesehatan Kementerian Kesehatan Tanjung Karang
(3) Politeknik Kesehatan Kementerian Kesehatan Tanjungkarang
(*) Corresponding Author
DOI : 10.30604/jika.v7i3.1235

Abstract

The high rate of population growth and industrialization impact increasing the need for clean water. Meanwhile, the quantity and quality of water are decreasing due to the exploitation of groundwater and industrial and domestic pollution. The utilization of rainwater is an alternative to sustainable water resources, but pollutants greatly influence its quality in the air. This study aims to improve the quality of rainwater as a source of drinking water by using the filtration method. The study used a completely randomized design with two replications. Three media were used (silica, zeolite, and activated carbon), and three thickness levels for each medium. Raw water is rainwater collected from the roofs of people's houses in industrial areas located by the sea, with the characteristics of dense population and heavy traffic. The water quality parameters observed were hardness, nitrite, nitrate, and sulfate. Water quality measurements were carried out before and after the experiment. The research has significantly proven that the combination of three media (silica, zeolite, and activated carbon) can improve the quality of rainwater on the parameters of hardness, nitrite, nitrate, and sulfate. The combination of the three media can reduce the value of hardness (37.9%), nitrite (73.18%), nitrate (61.32%), and sulfate (54.65%). The combination of thickness that is effective in reducing the values of the four parameters is 20 cm (silica), 40 cm (zeolite), and 40 cm (activated carbon). Overall, the parameters are in accordance with regulations. The filtration method with a combination of silica, zeolite, and activated carbon media effectively improve the chemical quality of rainwater so that it is suitable for consumption. However, the disinfection process needs to be carried out to eliminate microorganisms. Further research is needed to determine the saturation level of the filter media.

 

Abstrak: Tingginya laju pertumbuhan penduduk dan industrialisasi berdampak pada meningkatnya kebutuhan akan air bersih. Sementara itu, kuantitas dan kualitas air semakin menurun akibat eksploitasi air tanah dan pencemaran industri dan domestik. Pemanfaatan air hujan merupakan salah satu alternatif sumber daya air yang berkelanjutan, namun kualitasnya sangat dipengaruhi polutan di udara. Penelitian ini bertujuan untuk meningkatkan kualitas air hujan sebagai sumber air minum dengan menggunakan metode filtrasi. Penelitian menggunakan rancangan acak lengkap faktorial dengan dua ulangan. Tiga media yang digunakan (silika, zeolit, dan karbon aktif), dan tiga tingkat ketebalan untuk setiap media. Air baku adalah air hujan yang ditampung dari atap rumah-rumah penduduk di kawasan industri yang terletak di tepi laut, dengan karakteristik padat penduduk dan padat lalu lintas. Parameter kualitas air yang diamati adalah kesadahan, nitrit, nitrat, dan sulfat. Pengukuran kualitas air dilakukan sebelum dan sesudah percobaan. Penelitian telah membuktikan bahwa kombinasi tiga media (silika, zeolit, dan karbon aktif) dapat meningkatkan kualitas air hujan pada parameter kesadahan, nitrit, nitrat, dan sulfat. Kombinasi ketiga media tersebut dapat menurunkan nilai kesadahan (37,9%), nitrit (73,18%), nitrat (61,32%), dan sulfat (54,65%). Kombinasi ketebalan yang efektif menurunkan nilai keempat parameter tersebut adalah 20 cm (silika), 40 cm (zeolit), dan 40 cm (karbon aktif). Secara keseluruhan, nilai parameter sesuai dengan regulasi. Metode filtrasi dengan kombinasi media silika, zeolit, dan karbon aktif efektif meningkatkan kualitas kimiawi air hujan sehingga layak untuk dikonsumsi. Namun, proses desinfeksi perlu dilakukan untuk menghilangkan mikroorganisme. Diperlukan penelitian lebih lanjut untuk mengetahui tingkat kejenuhan media filter.

Keywords


Rain water harvesting; filtration; pollution; silica; zeolit; activated carbon

References


Anie Yulistyorini. (2011). Pemanenan Air Hujan Sebagai Alternatif Pengelolaan Sumber Daya Air di Perkotaan. Teknologi Dan Kejuruan, 34(1), 105–114. https://doi.org/10.17977/tk.v34i1.3024

Asmadi, Khayan, and Kasjono, H. S. (2011). Teknologi Pengolahan Air Minum (1st ed.). Gosyen Publishing.

Bae, S., Maestre, J. P., Kinney, K. A., and Kirisits, M. J. (2019). An examination of the microbial community and occurrence of potential human pathogens in rainwater harvested from different roofing materials. Water Research, 159, 406–413. https://doi.org/10.1016/j.watres.2019.05.029

BAPENAS. (2019). Roadmap of SDGs Indonesia Towards 2030 (Issue November).

Carolin, C. F., Kumar, P. S., Saravanan, A., Joshiba, G. J., and Naushad, M. (2017). Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering, 5(3), 2782–2799. https://doi.org/10.1016/j.jece.2017.05.029

Garcia-Montoya, M., Bocanegra-Martínez, A., Nápoles-Rivera, F., Serna-González, M., Ponce-Ortega, J. M., and El-Halwagi, M. M. (2015). Simultaneous design of water reusing and rainwater harvesting systems in a residential complex. Computers and Chemical Engineering, 76, 104–116. https://doi.org/10.1016/j.compchemeng.2015.02.011

García Soler, N., Moss, T., and Papasozomenou, O. (2018). Rain and the city: Pathways to mainstreaming rainwater harvesting in Berlin. Geoforum, 89(May 2017), 96–106. https://doi.org/10.1016/j.geoforum.2018.01.010

Hamilton, K. A., Ahmed, W., Palmer, A., Sidhu, J. P. S., Hodgers, L., Toze, S., and Haas, C. N. (2016). Public health implications of Acanthamoeba and multiple potential opportunistic pathogens in roof-harvested rainwater tanks. Environmental Research, 150, 320–327. https://doi.org/10.1016/j.envres.2016.06.017

Harnowo, A., Hidayah, E. N., and Janah, M. (2019). Kapasitas Adsorbansi Arang Aktif Kulit Kacang Tanah Pada Penyisihan Logam Fe. Jurnal Mineral, Energi, Dan Lingkungan, 3(1), 53. https://doi.org/10.31315/jmel.v3i1.2991

Helmreich, B., and Horn, H. (2009). Opportunities in rainwater harvesting. Desalination, 248(1–3), 118–124. https://doi.org/10.1016/j.desal.2008.05.046

Jamali, B., Bach, P. M., and Deletic, A. (2020). Rainwater harvesting for urban flood management – An integrated modelling framework. Water Research, 171, 115372. https://doi.org/10.1016/j.watres.2019.115372

Jannah, F. H. S. (2019). Pengaruh Tinggi Media Pasir Silika Terhadap Penyisihan Kekeruhan Pada Unit Filtrasi Pengolahan Air Minum. Angewandte Chemie International Edition, 6(11), 951–952.

Kisakye, V., and Van der Bruggen, B. (2018). Effects of climate change on water savings and water security from rainwater harvesting systems. Resources, Conservation and Recycling, 138(April), 49–63. https://doi.org/10.1016/j.resconrec.2018.07.009

Koplan, J. P., Deen, R. D., Swanston, W. H., and Tota, B. (1978). Contaminated roof-collected rainwater as a possible cause of an outbreak of salmonellosis. Journal of Hygiene, 81(2), 303–309. https://doi.org/10.1017/S0022172400025146

Kristianto, H. (2017). The Potency of Indonesia Native Plants as Natural Coagulant: a Mini Review. Water Conservation Science and Engineering, 2(2), 51–60. https://doi.org/10.1007/s41101-017-0024-4

Kusnaedi. (2010). Mengolah Air Kotor Untuk Air Minum. Penebar Swadaya.

Lee, J. Y., Bak, G., and Han, M. (2012). Quality of roof-harvested rainwater - Comparison of different roofing materials. Environmental Pollution, 162, 422–429. https://doi.org/10.1016/j.envpol.2011.12.005

Leong, J. Y. C., Chong, M. N., Poh, P. E., Hermawan, A., and Talei, A. (2017). Longitudinal assessment of rainwater quality under tropical climatic conditions in enabling effective rainwater harvesting and reuse schemes. Journal of Cleaner Production, 143, 64–75. https://doi.org/10.1016/j.jclepro.2016.12.149

Macomber, P. S. H. (2001). Guidelines on Rainwater Catchment Systems for Hawaii.

Marsidi, R. (2001). Zeolit Untuk Mengurangi Kesadahan Air. Jurnal Teknologi Lingkungan, 2(1), 1–10. https://doi.org/10.29122/jtl.v2i1.193

Naddeo, V., Scannapieco, D., and Belgiorno, V. (2013). Enhanced drinking water supply through harvested rainwater treatment. Journal of Hydrology, 498, 287–291. https://doi.org/10.1016/j.jhydrol.2013.06.012

Nair-Bedouelle, S. (2022). Making a water secure world a reality for all through the Intergovernmental Hydrological Programme. UNESCO. www.unesco.org

Nalwanga, R., Muyanja, C. K., McGuigan, K. G., and Quilty, B. (2018). A study of the bacteriological quality of roof-harvested rainwater and an evaluation of SODIS as a suitable treatment technology in rural Sub-Saharan Africa. Journal of Environmental Chemical Engineering, 6(3), 3648–3655. https://doi.org/10.1016/j.jece.2016.12.008

Palla, A., Gnecco, I., and La Barbera, P. (2017). The impact of domestic rainwater harvesting systems in storm water runoff mitigation at the urban block scale. Journal of Environmental Management, 191, 297–305. https://doi.org/10.1016/j.jenvman.2017.01.025

Pitulima, J. (2018). Studi Daya Serap Karbon Aktif Batubara terhadap penurunan Kadar Logam Cu dalam Larutan CUSO4. Seminar Nasional Penelitian Dan Pengabdian Masyarakat, ISBN: 978-, 1–5.

Rambe, A. M. (2009). Pemanfaatan Biji Kelor (Moringa Oleifera) sebagai Koagulan Alternatif dalam Proses Penjernihan Limbah Cair Industri Tekstil. Universitas Sumatera Utara.

Retno, E., P, A., Rizki, B., and Wulandari, N. (2012). Pembuatan Ethanol Fuel Grade dengan Metode Adsorbsi Menggunakan Adsorbent Granulated Natural Zeolite dDan CaO. Simposium Nasional RAPI XI FT UMS-2K012, 45–50. https://publikasiilmiah.ums.ac.id/xmlui/handle/11617/3786

Sánchez, A. S., Cohim, E., and Kalid, R. A. (2015). A review on physicochemical and microbiological contamination of roof-harvested rainwater in urban areas. Sustainability of Water Quality and Ecology, 6, 119–137. https://doi.org/10.1016/j.swaqe.2015.04.002

Sasongko, E. B., Widyastuti, E., and Priyono, R. E. (2014). Kajian Kualitas Air dan Penggunaan Sumur Gali oleh Masyarakat di Sekitar Sungai Kaliyasa Kabupaten Cilacap. Jurnal Ilmu Lingkungan, 12(2), 72. https://doi.org/10.14710/jil.12.2.72-82

Semaan, M., Day, S. D., Garvin, M., Ramakrishnan, N., and Pearce, A. (2020). Optimal sizing of rainwater harvesting systems for domestic water usages: A systematic literature review. Resources, Conservation & Recycling: X, 6, 100033. https://doi.org/10.1016/j.rcrx.2020.100033

Senthil Kumar, P., Joshiba, G. J., Femina, C. C., Varshini, P., Priyadharshini, S., Arun Karthick, M. S., and Jothirani, R. (2019). A critical review on recent developments in the low-cost adsorption of dyes from wastewater. Desalination And Water Treatment, 172, 395–416. https://doi.org/10.5004/dwt.2019.24613

Sirait, M., Bukit, N., and Simarmata, U. (2014). Sintesis Nanozeolit Alam menggunakan Metode Ball Milling. Jurnal Sains Materi Indonesia, 16(1), 7–11. https://doi.org/10.17146/jsmi.2014.16.1.4326

Syauqiah, I., Amalia, M., and Kartini, H. A. (2011). Analisis Variasi Waktu dan Kecepatan Pengadukan Pada Proses Adsorpsi. Info Teknik, 12(1), 11–20. https://doi.org/10.20527/infotek.v12i1.1773

Taiwo, A. S., Adenike, K., and Aderonke, O. (2020). Efficacy of a natural coagulant protein from Moringa oleifera (Lam) seeds in treatment of Opa reservoir water, Ile-Ife, Nigeria. Heliyon, 6(1), e03335. https://doi.org/10.1016/j.heliyon.2020.e03335

UN. (2020). World Population Prospects 2019: Highlights | United Nations. United Nation; United Nations.

Untari, T., and Kusnadi, J. (2015). Pemanfaatan Air Hujan Sebagai Air Layak Konsumsi Di Kota Malang Dengan Metode Modifikasi Filtrasi Sederhana. Jurnal Pangan Dan Agroindustri, 3(4), 1492–1502.

Utami, S., and Handayani, S. K. (2017). Ketersediaan Air Bersih untuk Kesehatan: Kasus Dalam Pencegahan Diare pada Anak. In N. Pangaribuan, I. Winani, M. Toha, & S. Utami (Eds.), Optimalisasi Peran Saint & Tekhnologi Untuk Mewujudkan Smartcity (1st ed., pp. 211–236). Universitas Terbuka.

Vialle, C., Busset, G., Tanfin, L., Montrejaud-Vignoles, M., Huau, M. C., and Sablayrolles, C. (2015). Environmental analysis of a domestic rainwater harvesting system: A case study in France. Resources, Conservation and Recycling, 102, 178–184. https://doi.org/10.1016/j.resconrec.2015.07.024

Waso, M., Khan, S., and Khan, W. (2018). Microbial source tracking markers associated with domestic rainwater harvesting systems: Correlation to indicator organisms. Environmental Research, 161(September 2017), 446–455. https://doi.org/10.1016/j.envres.2017.11.043

Wigmans, T. (1986). Fundamentals and Practical Implications of Activated Carbon Production by Partial Gasification of Carbonaceous Materials. In Carbon and Coal Gasification (pp. 559–599). Springer Netherlands. https://doi.org/10.1007/978-94-009-4382-7_22

Wurthmann, K. (2019). Assessing storage requirements, water and energy savings, and costs associated with a residential rainwater harvesting system deployed across two counties in Southeast Florida. Journal of Environmental Management, 252(September), 109673. https://doi.org/10.1016/j.jenvman.2019.109673

Yushananta, P. (2021). Tinjauan Faktor Yang Mempengaruhi Kualitas Air Pada Sistem Rain Water Harvesting (RWH). Ruwa Jurai: Jurnal Kesehatan Lingkungan, 15(1), 40. https://doi.org/10.26630/rj.v15i1.2178

Yushananta, P., and Ahyanti, M. (2022a). Novel Copolymer Cationic from Agroindustrial Waste using Microwave. Open Access Macedonian Journal of Medical Sciences, 10(E), 458–464. https://doi.org/10.3889/oamjms.2022.8126

Yushananta, P., and Ahyanti, M. (2022b). Utilization of Banana Pith Starch From Agricultural Waste As A Cationic Coagulant. Jurnal Aisyah : Jurnal Ilmu Kesehatan, 7(1), 165–172. https://doi.org/10.30604/jika.v7i1.856

Yushananta, P., and Bakri, S. (2021). Analisis Pembiayaan Peningkatan Akses Air Minum dan Sanitasi Sehat Dengan Pendekatan Cost Benefit Analysis (CBA). Jurnal Kesehatan, 12(2), 306. https://doi.org/10.26630/jk.v12i2.1855

Zhao, Y., Wang, X., Liu, C., Wang, S., Wang, X., Hou, H., Wang, J., and Li, H. (2019). Purification of harvested rainwater using slow sand filters with low-cost materials: Bacterial community structure and purifying effect. Science of the Total Environment, 674, 344–354. https://doi.org/10.1016/j.scitotenv.2019.03.474

Zhu, J. jun, Yu, L. zhong, Xu, T. le, Wei, X., and Yang, K. (2019). Comparison of water quality in two catchments with different forest types in the headwater region of the Hun River, Northeast China. Journal of Forestry Research, 30(2), 565–576. https://doi.org/10.1007/s11676-018-0688-4

Zhu, K., Zhang, L., Hart, W., Liu, M., and Chen, H. (2004). Quality issues in harvested rainwater in arid and semi-arid Loess Plateau of northern China. Journal of Arid Environments, 57(4), 487–505. https://doi.org/10.1016/S0140-1963(03)00118-6


Article Statistic

Abstract view : 17 times
PDF (Bahasa Indonesia) views : 3 times

Dimensions Metrics

How To Cite This :

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Qori Nur Annisa, Prayudhy Yushananta, Bambang Murwanto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.