Tepung Labu Kuning (Cucurbita Moschata) Menurunkan Kadar Glukosa Darah Tikus Model Sindroma Metabolik

Diah Wahyuni(1*)
(1) Program S1 Keperawatan STIKes Aisyah Pringsewu
(*) Corresponding Author
DOI : 10.30604/jika.v2i1.26

Abstract

Abstrak: Diet tinggi lemak dan fruktosa dapat menginisiasi terjadinya sindroma metabolik, diantaranya dislipidemia, hiperglikemia, dan resistensi insulin. Labu kuning dengan varietas Cucurbita Moschata diketahui memiliki kadar karotenoid yang tinggi, terutama alpha dan beta-karoten, beta-criptoxanthina, lutein, dan zeaxanthin. Penelitian ini menggunakan metode quasi eksperimental dengan rancangan post test only group design menggunakan tikus Sprague Dawley kedalam 5 kelompok (Kelompok kontrol normal: tikus sehat; Kelompok kontrol hiperglikemia: diet tinggi lemak dan fruktosa (DTLF) ; Kelompok tepung labu kuning 0,16g/200g BB: DTLF ditambah tepung labu kuning 0,16g/200g BB ; Kelompok tepung labu kuning 0,32g/200g BB: DTLF ditambah tepung labu kuning 0,32g/200g BB; Kelompok tepung labu kuning 0,64g/200g BB: DTLF ditambah tepung labu kuning 0,64g/200g BB). Pemberian diet tinggi lemak dan fruktosa (DTLF) dilakukan selama 25 hari berturut-turut, selanjutnya dilakukan pemeriksaan kadar glukosa darah. Dilanjutkan pemberian tepung labu kuning dilakukan selama 4 minggu. Data dianalisis dengan uji parametrik yaitu one-way ANOVA dan uji t berpasangan dengan nilai probabilitas p kurang dari 0,05. Hasil uji oneway ANOVA terhadap delta kadar GDP menunjukkan perbedaan yang bermakna antar kelompok, dan hasil uji post hoc didapatkan bahwa delta kadar GDP K3, K4, K5, dan K2 berbeda secara bermakna p kurang dari 0,05. Hasil uji T berpasangan menunjukkan bahwa kadar GDP K2, K3, K4, dan K5 menunjukkan perbedaan yang bermakna setelah induksi DTLF dan setelah intervensi tepung labu kuning, sehingga dapat disimpulkan bahwa intervensi tepung labu kuning dapat menurunkan kadar GDP


Abstract: High-fat and fructose diet which lasts longer be considered as a factor in the initiation of metabolic syndrome, likes dyslipidemia, hyperglycemia, and insulin resistance. Pumpkins with varieties Cucurbita Moschata is known have high levels of carotenoids, especially alpha and beta-carotene, beta-criptoxanthina, lutein, and zeaxanthin. This study used quasi experimental with post test only control group design. Twenty five male Sprague Dawley rats were induced by induced high fat and fructose diet. Rats were randomly divided into five groups: (1) normal control rats group, (2) hyperglicemia control rats groups, (3) HFFD rats receive powder pumpkin 0,16g/200g weight, (4) HFFD rats receive powder pumpkin 0,32g/200g weight, and (5) HFFD rats receive powder pumpkin 0,64g/200g weight. HFFD was given for 25 days and continued pumpkin powder was given for 28 days. Blood glucose levels were analyzed using glucose oxidase p-aminophenazone (GOD-PAP) method. Expression of IRS-1 genes were estimated using real time polymerase chain reaction (RT-PCR). Data analysis was performed with One way ANOVA/Post Hoc test and dependent t-test with significance level of 0.05. The oneway ANOVA test results on the delta of GDP levels showed significant differences between groups (p less than 0.05), and post hoc test results showed that the delta of K3, K4, K5 and K2 GDP differed significantly by p less than 0.05. Paired T-test results showed that the GDP of K2, K3, K4, and K5 showed significant differences after DTLF induction and after intervention of the pumpkin powder, so it can be concluded that the intervention of the pumpkin powder may decrease the GDP level.

Keywords


Metabolic syndrome; blood glucose; cucurbita moschata; carotenoid

References


Aude, Y. W., Mego, P., Mehta, J. L. Metabolic Syndrome: Dietary Interventions. (2004). Curr Opin Cardiol. 19: 473–479.

Ble-Castillo, J. L., Aparicio-Trapala, M. A., Juarez-Rojop, I. E., Torres-Lopez, J. E., Mendez, J. D., Aguilar-Mariscal, H., Olvera-Hernandez, V., Palma-Cordova, L. C., Diaz-Zagoya, J. C. (2012). Differential Effect of High-Carbohydrate and High-Fat Diet Composition on Metabolic Control and Insulin Resistance in Normal Rats. Int J Environ Res. 9: 1663-1676.

Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature. 414: 813–820.

Carlsson, C., Borg, L. A., Welsh, N. (1999). Sodium Palmitate Induces Partial Mitochondrial Uncoupling And Reactive Oxygen Species In Rat Pancreatic Islets In Vitro. Endocrinology. 140: 3422–3428.

Coate, K. C., Scott, M., Farmer, B., Moore. M. C., Smith, M., Roop, J., Neal, D. W., Williams, P., Cherrington, A. D. (2010). Chronic consumption of a high-fat/high-fructose diet renders the liver incapable of net hepatic glucose uptake. Am J Physiol Endocrinol Metab. 299: 887–898.

Grundy, S. M., Abate, N., and Chandalia, M. (2002). Diet Composition and The Metabolic Syndrome: What Is The Optimal Fat Intake. Am Med J. 30: 113.

Kim, Y. I., Lee, F. N., Choi, W. S. (2006). Insulin Regulation of Sceletal Muscle PDK4 mRNA Expression Is Impaired in Acute Insulin Resistant State. Diabetes. 55(8): 2311-2317.

Reeves, PG., Neilsen, FH., and Fahey, JR. (1993). AIN-93 Purified Diets for Laboratory Rodents: Final Report of The American Institute of Nutrition Ad Hoc Writing Committee on the Formulation of the AIN-76A Rodent Diet. J Nutr. 123(11): 1939-51.

Rodriguez-Amaya, D. B., Kimura, M., Godoy, H. T., and Amaya-Farfan, J. (2008). Updated Brazilian Database on Food Carotenoids: Factors Affecting Carotenoids Composition. J Food Compost Anal. 21: 445–463.

Sedigheh. A., Jamal. M.S., Mahbubeh. S., Somayeh. K., Mahmoud. R, Azadeh. A., and Fatemeh. S. (2011). Hypoglycaemic and Hypolipidemic Effects of Pumpkin (Cucurbita Pepo L.) on Alloxan-Induced Diabetic Rats. J Pharm Pharm. 23: 2620-2626.

Tourniaire, F., Gouranton,E., Von Lintig, J., Keijer, J., Luisa Bonet,M., Amengual, J., Lietz, G., and Landrier, J. F. (2009). Beta-carotene conversion products and their effects on adipose tissue. Genes Nutr. 3: 179–187.

Tranchida, F., Tchiakpe, L., Rakotoniaina, Z., Deyris, V., Ravion, O., Hiol, A. (2012). Long-term High Fructose and Saturated Fat Diet Affects Plasma Fatty Acid Profile In Rats. Biomed & Biotechnol. 13(4): 307-317

Wojtczak, L. & Schonfeld, P. (1993). Effect of Fatty Acids on Energy Coupling Processes in Mitochondria. Biochim Biophys Acta. 1183: 41–57.


Article Statistic

Abstract view : 1110 times
PDF (Bahasa Indonesia) views : 476 times

Dimensions Metrics

How To Cite This :

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.