Vital Lung Capacity in Active Smokers

Edy Sapada¹, Wita Asmalinda²*)

¹,² STIK Siti Khadijah Palembang, Indonesia

ARTICLE INFO

Article history:
Received 19 March 2023
Accepted 15 June 2023
Published 30 June 2023

Keyword:
Vital Lung Capacity
Active Smokers

ABSTRACT

The prevalence of Indonesian smokers is increasing, the age of smokers is getting younger every day, and the number of cigarettes consumed is increasing. Smoking behavior or habits can have an impact on the emergence of pulmonary ventilation disorders due to irritation and excessive mucus secretion in the bronchi. The study aimed to determine the correlation between age, number of cigarettes, and duration of smoking with the vital capacity value of the lungs of active smokers. This type of research is analytic with a cross-sectional approach. This research was conducted for 30 days at the Ibnu Sina Clinic in Palembang. The sample of this study was active smokers who met the inclusion, and exclusion criteria. The number of samples is 50 respondents. Data analysis used the SPSS version 16 program. Sample characteristic data and measurement results were assessed using the Spearman test. The results of the study found there was a strong correlation between age variables in smoking duration and the vital lung capacity of the respondents. It was concluded that there was a significant correlation between the variables of age, number of cigarettes and duration of smoking with active smokers vital lung capacity values. It is suggested to conduct further research on cytokine variables.

Kata kunci:
Kapasitas Vital Paru
Perokok aktif

*) corresponding author
Wita Asmalinda, SST., M.Kes
Faculty of Midwifery
Jl H.M.Saleh Perumahan Alam Raya
residence Blok E1 No 14 Kec. Sukarami
Kota Palembang-Indonesia 30153
Email: wita_asmalinda@yahoo.co.id
DOI: 10.30604/jjika.v8i3.2032
Copyright 2023 @author(s)

ABSTRAK

Available online at: https://aisyah.journalpress.id/index.php/jika/
Email: jurnal.aisyah@gmail.com
INTRODUCTION

The last decade revealed that there was a significant increase in the prevalence of active smokers in Indonesia (Nadia, L., 2016; Sapada, 2020). The cause of death due to smoking worldwide is 1:10 (Hanewinkel, R., 2010; Nadia, L., 2016). There has been a large increase in smoking behavior in Indonesia, which tends to smoke at a young age (Rahmat, M., 2013). Adolescents who consume cigarettes are increasing every year, with the total consumption of cigarettes increasing per day (Nadia, L., 2016). There are 2.6% of teenagers starting to smoke at the age of 10-14 years. As many as 0.7% of these adolescents regularly smoke every day, with an average consumption of 10 cigarettes per day (Rahmat, M. 2013). It is also concerning that the largest group of cigarette consumers is people with low incomes. Allegedly the factors of environmental influence and the association of adolescents are the originators of this (Atmajaya, 2007; Sapada, 2021). Starting from association and then continuing to become nicotine addiction (Larasati, A., 2016; Abdurahman, WF, 2010). Smoking habits are an interaction of physiological, psychological and cognitive aspects (Siregar, 2020). Another supporting factor is that cigarette users do not directly feel the bad effects of smoking in the short term so there is a tendency to reject health appeals about the dangers of smoking (Ministry of Health RI., 2019; Larasati, A., 2016; Susana, 2003). According to the World Health Organization (WHO) in developing countries around 50-60% of men and 10% of women have smoking habits while in developed countries around 30% of men and 30% of women have smoking habits (Buchari, 2007; Sapada, 2020). The prevalence of smokers in Indonesia includes 67% of men smoking, and 2.7% of women smoking. From the smoker's data, 80.4% of the current smoking population only smokes kretek cigarettes. 1.7% of the population consumes chewing tobacco (Asmalinda, 2021; Ministry of Health RI., 2015; Abdurahman WF, 2010; Ramos V, 2009; Baktiar, A., 2016).

The Active smokers are individuals who consume cigarettes regularly and periodically (Ardam, 2015; Sapada, 2020; Asmalinda, 2021). According to Asmalinda (2021), active smokers are on average able to spend 10-20 cigarettes per day. When active smokers carry out smoking activities, the cigarette smoke released into the environment is 4-6 times more nicotine than the smoke inhaled by the smoker himself. It is assumed that when smoking, the smoke produced by a cigarette that is still burning will continue and be released into the air even though it is not inhaled (Susana, 2003; Asmalinda, 2021). Smoking behavior or habits can have an impact on the emergence of pulmonary ventilation disorders due to irritation and excessive mucus secretion in the bronchi (Abdurahman, WF., 2010; Alsagaff, H & Mukty, 2008; Nadia, L., 2016). Toxic substances in cigarettes over a long period time will increasingly accumulate in the body, causing the exchange of oxygen with carbon dioxide in the alveoli to be disrupted and in severe conditions will cause damage to the alveoli (Barakati et al., 2015; American Lung Association, 2017). This damage will reduce the number of alveoli that function in the respiration process, causing a decrease in the function of the lung organs and a decrease in lung vital capacity (Barakati et al., 2015).

The content in cigarette smoke and inhaled cigarettes can accumulate in the body cumulatively so that the longer a person smokes, the more harmful substances in cigarettes will enter the body (Adeniyi, B. O., & Erhabor, G. E. 2011). In the lungs, there is Glutathione (GSH) which is an antioxidant compound that protects the lungs. In active smokers, it is reported that there is a decrease in Glutathione metabolism (Nadia, L., 2016). This is thought to activate the decreased elasticity of the lungs resulting in emphysema (widening of the alveoli) (Nadia, L., 2016; Budiman, 2018). During their journey, patients with emphysema take a long time for their breathing activities (Nadia, L., 2016). If this condition is allowed to continue, it will cause interference with the vital capacity of the lungs and at certain stages will cause further effects in the form of disorders or diseases in the lungs such as chronic obstructive pulmonary disease (COPD) to cancer (Adeniyi, B.O., & Erhabor, G. E. 2011; Antao, 2015).

The Vital lung capacity (KVP) is the amount of air that can be expelled by voluntary effort after deep inspiration (Adeniyi, B.O., 2011; Guyton and Hall, 2012; Bakhthiari, A., 2016; Asmalinda, 2021). Vital lung capacity is the sum of the tidal volume, inspiratory reserve volume, and in-expiratory reserve volume (Guyton and Hall, 2012; Bakhthiari, A., 2016; Asmalinda, 2021). Vital lung capacity reflects the change in maximal lung volume which is useful for ascertaining the picture of functional lung capacity. The vital lungs capacity can be measured using a pulmonary function test kit. The most basic test used is spirometry (Sherwood, 2014; Pellegrino, R., 2010; Smeltzer, SC., 2002; Sapada, 2020). The measurement of the vital capacity of the lungs is the largest volume of air that can be exhaled after the deepest inspiration to allow free inspiratory breathing. There will be suction pressure which will affect the increase in lung volume and capacity (Bakhthiari, A., 2016; Pinugraha, B., 2017). Vital capacity values are influenced by age, sex, body weight, (Pujiausti, BE., 2012; Zulfrianingrum, H., 2016; Sapada, 2020), body position, respiratory muscle strength, the ability of the lungs and chest cavity to expand (Bakhthiari, A., 2016). The vital capacity of the lungs is reduced if there is lung and heart disease which causes lung congestion and respiratory muscle weakness (Hapsari, R., 2009; Gunther, AC., 2006; Citizen, 2015).

Factors that affect the quality of lung capacity by showing interference in the form of restrictive, obstructive, or a combination of both. Several internal and external factors can influence lung disease. Internal factors include the body's defense system, anatomically and physiologically, age, gender, history of disease, nutritional status, and individual susceptibility. External factors include exposure to dust, exercise habits, work history, work environment, use of respiratory protective equipment, and smoking habits (Dwiaputra, 2019; Sapada, 2020). One of the indicators in assessing the level of lung health is the vital lung capacity (VAD). According to Pellegrino & Antonelli (2010) the change in maximal lung volume which is useful for ascertaining the functional capacity of the lung or what is called the vital capacity of the lung is an important measurement to determine lung restrictive abnormalities which are shown by decreased lung function. To check the condition of the lungs, the first thing the subject has to do is maximal inspiration, then the next thing to do is maximal expiration. According to research by Hapsari, R (2009) every cigarette puff can increase heart rate and blood pressure resulting in a lack of oxygen in the bloodstream. The existence of toxic substances contained in cigarettes will inhibit gas exchange in the alveoli. This of course will activate the decreased elasticity of the lungs resulting in emphysema (widening of the alveoli) (Nadia, L., 2016; Budiman, 2018).
METHODS

This research is an analytic observational research that is based on natural events without any treatment of the object under study. The research design based on the time of implementation is a cross-sectional study that aims to analyze the effect of age and length of smoking and the number of cigarettes consumed per day on lung vital capacity in objects that are actively smoked. This research was carried out at the Palembang Ibnu Sina Clinic which is located at Jalan Kasnariansyah number 1627 RT 21 RW 07 Kelurahan 20 Ilir DIV Ilir Timur I KM 4.5 District Palembang City for 1 month from 01 September to 30 September 2022.

The sample in the study This is part of the active smokers who visited the Ibnu Sina Palembang Clinic totaling 50 respondents. The sampling method used Consecutive Sampling which means that all active smokers who meet the inclusion criteria will become the research sample. To all respondents explained the purpose, procedure, benefits, and risks as a sample in this study. After obtaining the respondent's consent, they then signed an informed consent to become the respondent in this study. The independent variables in this study were the age of active smokers, duration of smoking, and the number of cigarettes consumed per day. While the dependent variable is the value of lung vital capacity.

The data collected is primary data obtained through the process of filling out questionnaires to determine age, duration of smoking, number of cigarettes consumed per day and direct assessment to assess lung function using a lung function measuring instrument, namely a spirometer that uses electrical energy. Examination of lung vital capacity values was carried out by health workers at the Ibnu Sina Clinic in Palembang. Equipment and materials used for assessing lung function using lung function measuring devices, namely a spirometer that uses electrical energy, mouthpieces, alcohol cotton, trays, oval bowls (nierbekken), handsons, tables, chairs, trash cans, and chlorine solution. The procedure for collecting lung vital capacity data is as follows: the respondent is in the correct position, sitting upright or standing, with feet flat on the floor, and not crossing. Asking the respondent to loosen their clothing, because clothes that are too tight, can give a limited view on the spirometer giving inaccurate results, it could be that the lung vital capacity results obtained are lower than they are. Ask the respondent to massage the nose using the hand or nose clip, and perform a spirometry examination using a spirometer and mouthpiece. Respondents were asked to breathe normally first, then take a deep breath and exhale maximally, record the results displayed on the spirometer screen, and include vital capacity (VC).

This research has received an ethical approval recommendation from the Palembang Health Polytechnic Research Ethics Commission Number. 0196/KEPK/Adm.2/II/2022.

RESULTS AND DISCUSSION

An analytic observational study of Lung Vital Capacity in active smokers has been carried out with a cross sectional design. The data obtained in this study were then analyzed statistically using the SPSS version 16 program, which included univariate and bivariate analysis of the independent variables and the dependent variable

Table 1. Characteristics of Respondent

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>Median</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>50</td>
<td>17</td>
<td>62</td>
<td>37.44</td>
<td>36.00</td>
<td>14.224</td>
</tr>
<tr>
<td>Number of Cigarettes (cigarettes/day)</td>
<td>50</td>
<td>9</td>
<td>27</td>
<td>15.58</td>
<td>13.00</td>
<td>5.230</td>
</tr>
<tr>
<td>Long Smoking (year)</td>
<td>50</td>
<td>1</td>
<td>35</td>
<td>14.20</td>
<td>13.00</td>
<td>9.480</td>
</tr>
<tr>
<td>Vital Lung Capacity (ml)</td>
<td>50</td>
<td>3367</td>
<td>4624</td>
<td>4140.82</td>
<td>4183.00</td>
<td>303.999</td>
</tr>
</tbody>
</table>

From Table 1 above it is known that of the 50 respondents, the lowest age was 17 years and the highest age was 62 years. The average number of cigarettes consumed by respondents was 15.58 cigarettes per day with an SD value of 5,230. Of the 50 respondents, the average smoking duration was 14.20 years, the minimum smoking duration was 1 year and the longest was 35 years. The lowest respondent’s lung vital capacity value was 3367 ml and the highest was 4624 ml, with a mean value of 4140.82 ml with an SD value of 303.99. Active smokers are people who consume cigarettes regularly every day (Saputri et al., 2018; Asmalinda, W., 2021). The criteria for smokers include: light smokers can spend 1-10 cigarettes/day, moderate smokers to smoke 11-19 cigarettes/day, and heavy smokers can spend >20 cigarettes/day (Sapada, E., 2020). Age is related to the aging process, the older a person is, the higher the chance for decreased lung function (Fikriyah, S., 2012) Assmalinda, W., 2021; Saputri et al., 2018). Decreased lung function begins at the age of 30 years and accelerates after the age of 40 years. Another supporting factor for decreased lung function is if a person has a habit of smoking for a long period time and consumes large amounts of cigarettes every day. This process is exacerbated when active smokers rarely exercise and lack activity. (Gunther, 2006; Ganesha, 2020; Juarflant, 2015; Asmalinda, W., 2021).

Table 2: Correlation between Agen, Number of Cigarettes, and Duration of Smoking with Respondent’s Vital Lung Capacity

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Vital Lung Capacity</th>
<th>Correlation Coefficient</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>50</td>
<td>-0.830</td>
<td></td>
<td>0.0001</td>
</tr>
<tr>
<td>Number of Cigarettes (cigarettes/day)</td>
<td>50</td>
<td>-0.540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of Smoking (year)</td>
<td>50</td>
<td>-0.832</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
From Table 2 above, it can be seen that based on the results of the correlation test using the Spearman test on the variables of age and lung vital capacity, a significance value (p-value) of 0.0001 was obtained, which indicated that the correlation between the respondent’s age and lung vital capacity was significant. The Spearman correlation value for age and lung vital capacity is -0.830 indicating that the direction of the correlation is negative with a very strong correlation strength. The Spearman correlation test between the number of cigarettes consumed per day by the respondent and the vital lung capacity value obtained a significance value of 0.0001, this indicates that the correlation between the number of cigarettes consumed per day by respondents and the value of lung vital capacity was significant. The Spearman correlation value is -0.540 indicating that the direction of the correlation is negative with moderate correlation strength. The results of the Spearman correlation test between smoking duration and lung vital capacity obtained a significance value of 0.0001 which indicated that the correlation between the number of cigarettes consumed per day by respondents and the value of lung vital capacity was significant. The Spearman correlation value is -0.832 indicating that the direction of the correlation is negative with a very strong correlation strength. A negative value means that the greater the value of one variable, the smaller the value of the other variable.

Nicotine is a chemical that can poison the nerves. One cigarette contains 1 mg of nicotine which is absorbed through the lung epithelium. Nicotine, which has low concentrations, is a stimulant, which can increase blood pressure, activity, and memory, constrict peripheral vessels, and cause dependence on the wearer. Meanwhile, at high concentrations, it can act as a depressant (Jennifer, M.K., 2001; Siregar, 2020). The binding of nicotine and acetylcholine to nicotine receptors causes conformational changes that can open and close ion channel receptors thereby affecting neuron activity, synapse communication and behavior. The addiction process begins with the interaction between nicotine, and nicotine receptors in the brain in the mesolimbic area of the dopamine system in the Ventral Tegmental 11-neuron area. This interaction supports the activation of the Central Nervous System (CNS) including the dopamine Mesocumbens system. Activation of this nerve will result in the release of dopamine. Increased dopamine in the brain can stimulate the brain and activate reward pathways, namely feelings and behavior regulation systems caused by feedback mechanisms in the brain. It is strongly suspected that this mechanism encourages cigarette addicts to continue using nicotine and triggers extreme physical dependence on nicotine (Jennifer, M.K., 2001; Siregar, 2020). In addition, dopamine itself is a chemical compound produced by the body that is responsible for feelings of pleasure, joy, motivation and self-confidence in humans. It is this effect desired by smokers that causes addiction. So if someone consumes cigarettes continuously it will increase dopamine levels in the body which results in a feeling of addiction. If the work of the nervous system is disrupted, it will cause various changes in the body's systems, especially in the respiratory system. The function of the respiratory system and blood circulation will increase during childhood and will reach its peak at the age of 19-21 years (Siregar, 2020)

The accumulation of cigarette consumption per day among active smokers is increasing every year, this is suspected because the nicotine content in cigarettes has an addictive effect (physical addiction); namely the failure of active smokers to control smoking behavior, which is indicated by the increasing number of cigarettes consumed per day per day. Smoking is considered a social trend and activates the release of the neurotransmitter dopamine in the mesocorticilimbic dopaminergic cycle, which has a reward effect. The body responds by altering circulatory function in the typical compulsive behavior. In a state of addiction, cigarette addicts experience a lack of control, namely increasing the number of cigarettes consumed, because of the strong dependence on cigarettes and the convenience of smoking for a long time. Smoking behavior becomes anticipation, in the form of the assumption that smoking is a problem-solving or coping strategy. Cigarette addicts at the Neglect social life stage, ignore social life, focus more on the interests, and lose
CONCLUSION AND SUGGESTIONS

Based on the results of the analysis, there is a significant effect between age, number of cigarettes, and duration of smoking on the Vital Lung Capacity of active smokers, it can be concluded that age, number of cigarettes consumed, and duration of smoking in active smokers affect decreasing the value of vital capacity. It is recommended to conduct research further on the molecular level on cytokine parameters.

CONFLICT OF INTEREST STATEMENT

The authors declared that no potential conflict of interest concerning for the authorship and publication of this article.

REFERENCES

Dwi Putra, Edmundo C. (2019). Factors Affecting Lung Function in Stone Breaking Workers in Bandar Lampung City. Thesis at the Faculty of Medicine, University of Lampung.

